DigiClips Media Search Engine

sddec21-06

Tyler Johnson, Samuel Massey, Max Van de Wille, Max Wilson

Advisor: Ashfaq Khokhar

Our Client

- DigiClips, Inc. is a Colorado based media content analysis company
- Contacts:
 - Chairman: Bob Shapiro
 - Senior Software Engineer: Henry Bremers
- Constantly recording television news and radio in 210 markets
- Aiming to provide a search engine so that clients can search for keywords in broadcast recordings (mostly name, company names, etc.)

Presentation Schedule

- Project Overview
- System Design
- Demo
- Conclusion
- Q&A

Project Overview

- Problem Statement
- Functional Requirements
- Non-Functional Requirements
- Constraints and Considerations
- Project Milestones & Schedule

Project Overview Problem Statement

- So far, only closed caption data is extracted alongside television recordings
 - No closed captions for radio broadcasts
- Closed captions data often misses words or phrases
- Any visible text shown on screen is also not transcribed
- Untranscribed data leaves gaps in the searchable content of a broadcast

Project Overview Functional Requirements

- Speech-to-text must convert mono and stereo audio recordings into plain text
- Video-to-text must detect multiple fonts/styles of text on recording frames
- All system results must have appropriate searchable schemas
- All system results must have proper grammar and spelling
- All system errors must be alerted to the requesting service

Project Overview Non-Functional Requirements

- System will be built without using any costly API/cloud resources
- System will be built with documentation to explain usage
- System should scale with increased quantity of data
- System should reliably output accurate data within the length of the original recording

Project Overview Constraints & Considerations

Constraints:

- Cannot utilize certain paid APIs for speech-to-text or optical character recognition
- Developed program must be able to run on a relatively underpowered computer
- Must run quickly to query data within 24 hours of recording

Considerations:

- The output text must be indexed by timestamp so that it can be linked to a video segment
- Assuming video input will be high enough quality for accurate processing

Project Overview Project Milestones & Schedule

Milestones:

- Complete speech-to-text system
- Complete video-to-text system
- Integrate the two systems into Driver

Schedule:

- April 2021 December 2021
- April 2021 December 2021
- September 2021 December 2021

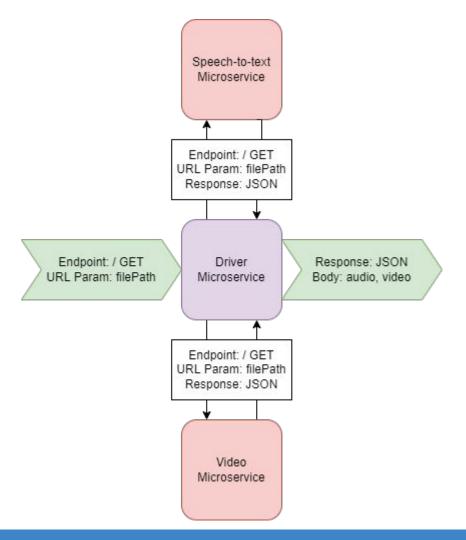
Project Overview Evaluation Criteria

- Achieve 80% accuracy on speech recognition
- Achieve 70% accuracy on video text recognition
- Process speech-to-text for a video file within 75% of the file's length.
- Process video-to-text for a video file within the length of the file.

Project Overview Challenges

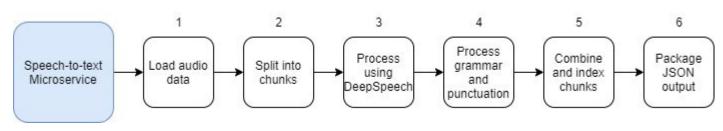
- Speech-to-text on news and radio coverage
 - Multiple voices
 - Background music and noise
- Video-to-text on news broadcast
 - Inconsistent background makes locating text difficult
 - Font color can greatly affect accuracy

System Design

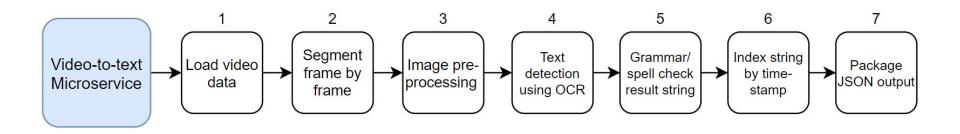

- Functional Decomposition
- Detailed Design
- Hardware & Software Platforms
- Test Plan
- Implementation

System Design Functional Decomposition

- Detect speech in audio file and output transcript
 - Split input into chunks for individual processing
 - Process output for grammar and punctuation
 - Index output with timestamps
- Detect words and phrases shown on screen and output
 - Splitting video file into individual frames
 - Image pre-processing
 - Index text output with timestamps
 - Output filtering (spell-checking, duplicate filtering)


System Design Detailed Design - Overall

- Microservices
 - Driver Microservice
 - Speech-to-text Microservice
 - Video-to-text Microservice



System Design Detailed Design - Speech-to-text

- Load file into application
- Split into chunks on silence
- Run chunks through DeepSpeech model
- Add grammar and punctuation
- Combine chunks
- Output

System Design Detailed Design - Video-to-text

- Perform pre-processing and text detection for every n frames
 - n is dependent on frames per second (fps) of input video
- Pre-processing includes binary mask, dilation, contour filtering
- Timestamp of frame (in seconds) can be found by calculating (frame number / fps)

System Design Hardware & Software Platforms

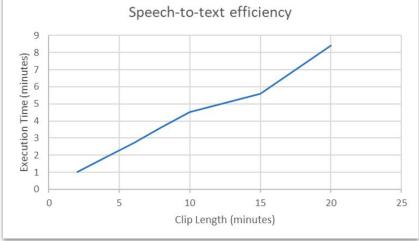
Programming Language:

• Python

Frameworks and Libraries:

- FastAPI
- Tesseract OCR
- OpenCV
- Numpy

- DeepSpeech
- pydub
- punctuator2
- pyspellchecker


System Design Test Plan

- Extremely time consuming to create test oracles for accuracy testing
- Many different ways to compare strings/sequences makes it difficult to get a true benchmark for accuracy
- Results
 - Peak accuracy of 82.5% accuracy for speech-to-text
 - Different comparisons provide different (but similarly high) percentages

C:\Users\Tyler\Box\College\CprE 492\text_testing>python testbench.py -t Transcribed.txt -g Generated.txt Transcribed wordcount is: 268 Generated wordcount is: 233 Generated text is: 0.869 times the size of the transcribed text Raw text ratio is: 0.825 Caseless text ratio is: 0.685 Grammerless text ratio is: 0.85

System Design Implementation - Speech-to-text

- Implemented FastAPI microservice
- API accepts a file path
- Outputs JSON speech-to-text result

GET	v localhost:5000/?fname=/test/audio/2.mp4		
Params	Authorization Headers (7) Body Pre-request Script Tests Settings		
Body Co	okies Headers (4) Test Results		
Pretty	Raw Preview Visualize JSON ~		
1 {			
2	"audio": [
3	6		
4	"text": "Ideational tribute to be officer killed in the holder to remarked the road as a police procession, has forced the body of officer heritag		
5	"num": 0,		
6	"start": 0,		
	"end": 18.023,		
7	chu i ioroza,		
7 8	"fname": "/test/audio/2.mp4"		

Example of using Postman to make requests to FastAPI service

sddec21-06

System Design Implementation - Speech-to-text

- Break audio into ~20-second chunks
- Process each chunk in parallel using DeepSpeech
- Return formatted JSON results to Driver
- Test news recording resulted in 72% accuracy
 - Comparing manually transcribed clip to speech-to-text result

System Design Implementation - Video-to-text

- Full API with image processing, output formatting
- Program accepts a file path to video
- Returns JSON-formatted list of identified strings with time-stamped start and end

Example output showing locations of identified text

GET	http://localhost:5000/?fname=D:/GitRepo/digiclips/vtt/samples/videos/test_news_vid_covid.mp4			
Params	Authorization Headers (6) Body Pre-request Script Tests Settings			
Body Cod	es Headers (4) Test Results	Time: 12.93		
Pretty	Raw Preview Visualize JSON ~ =			
93	{			
94	"text": "",			
95	"num": 389.6,			
96	"start": 13.0,			
97	"end": 13.0,			
98	"fname": "D:/GitRepo/digiclips/vtt/samples/videos/test_news_vid_covid.mp4"			
99	} ₀			
100	{			
101	"text": "«nos Dr JENNIFER ASHTON a Bbc ABC NEWS Chief Medical Correspondent",			
102	"num": 419.6,			
103	"start": 14.0,			
104	"end": 14.0,			
105	"fname": "D:/GitRepo/digiclips/vtt/samples/videos/test news vid covid.mp4"			
106	},			

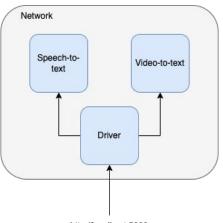
JSON output for previous figure with formatted timestamp

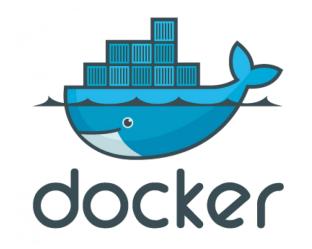
System Design Implementation - Video-to-text

sddec21-06

System Design Implementation – Video-to-text

- Duplicate filtering combines similar neighboring strings into a start-end timestamp range
- Limits excessive repetition across multiple frame instances


```
"text": "2" | Ss".
    "text": "LANCET STUDY 6 months ofter diagnosis, 1in 3 patients had psychiatric/neurologic symptoms",
   "num": 509.5.
                                                                                                                    "num": 449.6,
   "start": 17.0.
                                                                                                                    "start": 15.0,
   "end": 17.0,
                                                                                                                    "end": 15.0.
    "fname": "D:/GitRepo/digiclips/vtt/samples/videos/test news vid covid.mp4"
                                                                                                                    "fname": "D:/GitRepo/digiclips/vtt/samples/videos/test_news_vid_covid.mp4"
                                                                                                                    "text": "LANCET STUDY".
    "text": "LANCET STUDY 6 months after diagnosis, 1 in 3 patients had S psychiatric/neurologic symptoms",
                                                                                                                    "num": 479.5.
   "num": 539.5,
   "start": 18.0.
                                                                                                                    "start": 16.0,
   "end": 18.0.
                                                                                                                    "end": 16.0,
    "fname": "D:/GitRepo/digiclips/vtt/samples/videos/test news vid covid.mp4"
                                                                                                                    "fname": "D:/GitRepo/digiclips/vtt/samples/videos/test news vid covid.mp4"
                                                                                                               };
   "text": "LANCET STUDY 6 months after diagnosis, 1in 3 patients had psychiatric/neurologic symptoms",
                                                                                                                    "text": "LANCET STUDY 6 months ofter diagnosis, 1in 3 patients had psychiatric/neurologic symptoms'
                                                                                                                    "num": 509.5.
    "num": 569.4,
                                                                                                                    "start": 17.0,
   "start": 19.0.
                                                                                                                    "end": 19.0,
   "end": 19.0.
    "fname": "D:/GitRepo/digiclips/vtt/samples/videos/test_news_vid_covid.mp4"
                                                                                                                    "fname": "D:/GitRepo/digiclips/vtt/samples/videos/test_news_vid_covid.mp4"
},
```


Example output without duplicate filtering

Example output with duplicate filtering

System Design Implementation – Docker

- Portability
- Networking
- Ease of use

System Design **Demo**

Conclusion

- Final Project Status
 - Functioning application
 - Documentation nearly completed for all subsystems
 - General operations manual completed for client use
 - Difficult to obtain true accuracy results but we feel confident the program is around the initial expected accuracy
- Future Improvements
 - More advanced parallel process management
 - Improvements to video and audio preprocessing to increase accuracy
 - Utilize GPU acceleration to speed up processing

sddec21-06

Appendix

- Market Survey
- Potential Risks & Mitigation
- Resource & Cost Estimates
- Gantt Schedule
- Task Responsibilities & Contributions

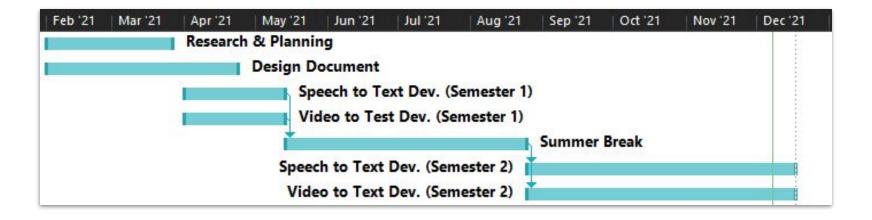
Appendix Market Survey

- Very few existing implementations of speech-to-text and video-to-text on television
- Most similar applications differ in key areas
 - Performing processing on a live feed
 - Grammar and spelling is not a concern for output
 - Output is not formatted to be searchable
 - Usages are not time-sensitive

Appendix Potential Risks & Mitigation

Risk	Probability	Mitigation
Speech-to-text processing inaccuracies	0.2	Extensively research speech recognition technology
Video-to-text service processing too intensive	0.5	Researching video OCR strategies and code optimization
Word misidentification	0.5	Testing throughout development Spell/Grammar output checking
System Integration	0.5	Containerized microservices limit integration issues

Appendix Resource & Cost Estimates


Resources:

• No additional resources required to complete project

Cost:

• This project will not incur any costs

Appendix Gantt Schedule

Appendix Task Responsibilities & Contributions

- Tyler Johnson
 - Responsible for planning and implementing testing on project
- Samuel Massey
 - Responsible for assignment planning and research/work on speech-to-text
- Max Van de Wille
 - Responsible for documenting architecture changes and working on video-to-text
- Maxwell Wilson
 - Responsible as primary point of contact with client and working on speech-to-text